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Mixed problems of the theory of elasticity, hydro- and aero-mechanics and of 

mathematical physics for the regions with partly infinite boundaries (a strip, lay- 

er, cylinder, wedge, cone, etc. ), can often be reduced to studying d-1 integral 
equations. These equations usually involve the use of an integral transformgene- 

rated by the Sturm-Liouville problem on a semi-infinite interval. Mixed prob- 

lems for the finite regions (rectangle, circular plate, cylinder of finite length, 

sphere, etc. ) can often be reduced to studying the dual series equations of some 

complete system of weight-orthonormed functions generated by the Sturm-Liou- 
ville problem on a finite interval. The present paper offers a method of reducing 
a wide class of such dual integral and series equations to infinite algebraic sys- 
tems of special type. A way of investigating the infinite system obtained is in- 

dicated. The concept underlying the method was explained earlier by the author 

in Cl]. 

1. Let a second order linear differential equation be given 

(L - U”) y = 0, Ly = r (X) Is (X) ,‘I’ + t (4 y (n u’x <co) (1.1) 

Here s (z) > 0 when z E (a, oc) and r (2) is a sign-definite function for 5 E (a, 
oo). Let also the functions y and y’ be bounded when J: + oc and 

a,y’ + f-%y = 0 (1.2) 
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when x _: a 
By solving the Sturm-Liouville problem on a semi-infinite interval, we construct the 

following integral transform [2, 31: 

f (4 x [ F (u> Y @, x) dp (u), P (u) = s ’ fb)?/(U,x) dx 

r (.c) 
(1.3) 

-CC CL 

where y (u, X) is an eigenfunction and p (u) is a nondecreasing spectral function. 

Let us now consider the dual integral equation 

m 

CL 

s Q(u) y(u,z)dp(u) == 0 (a<,<<~, d<z<,m) 
-cm 

K (7.4) = A g$f = AljJl ++)(I ++)-l (A-const) (1.5) 

Here + id, and +iy, denote the denumerable sets of simple zeros and poles. Let also 
6,and yn increase monotonously in modulo with increasing n thus ensuring the conver- 

gence of the infinite product (1.5), and let the following estimate hold on any correct 
system of contours c, in the complex plane of the variable u : 

O+--O(lu(p), p<i, n-+00 (1.6) 

We shall restrict our investigation to the case 

f (z) = Y (ia, x) (1.7) 

remembering that in the general case the function f (z) can be represented by the inte- 

gral (1.3). 

2. Making use of the fact that performing the operation L on the function Y (u, x) 

gives ua y (u, ST) and taking into account (1.5), we shall rewrite the first relation of the 
dual integral equation (1.4) as follows : 

A(P, (L) Q (4 = P*(L) Y (’ LE, X) = P, (- 8) y (ie, xj (C .< z <d) (2.1) 

s(x)= r Q(u)Y(w~~P~) (2.2) --(D 
Here P, (L) and P, (L) denote the differential operators in 1c of infinite order. The 
solution of the differential equation (2.1) in Q (x) can be written in the form : 

m 

4 (z) = K-l (ie) y (ie, x) + 2 H,(x) (c G 5 G ‘l) (2.3) 
1&=1 

.H, (x) := C,,y (is,,. J’) + Dn11 (ik, x) (2.4) 

In (2.3) the first term is a particular solution of the inhomogeneous equation and it can 
be obtained by symbolic method, while the infinite sum gives the general solution ofthe 



Method of reducing dual Integral equations and dual series equations 305 

homogeneous equation. In addition, 11 (u, z) is a solution of (1.1) linearly independent 

of Y (u, A . Formula (2.3) and the second relation of (1.4) together define the function 
4 (x) for ail z E [a, oo) with the accuracy of up to the denumerablesetofthe constants 
C, and D,. Now, using the inversion formula (1.3) we can determine the unknown 
Q (u) with the same accuracy. Taking into account the integral 

where y (v, z) and 11 (W, X) are any two solutions of (1.1) corresponding to u = v 

and u = w, we obtain the following expression for Q (u) : 

3. The constants C, and D, must be determined from the condition that the solu- 
tion (2.6) satisfies the first relation of the dual integral equation (1.4). Taking into ac- 

count the representation of the function 

f* (5) = {;(“‘;;~~“,;,;“k,,_&) ) (3.1) 

in the form of the integral (1.3) and assuming that K (i8J = 0, we substitute (2.6) 

into (1.4) to obtain 
ie, d) Sd (E, X) - y’ (ie, d) T,] (FJ)] $ (3.2) 

where 

s (c) {K-l (k) [y (ie, c) SC (e, x)- y’ (ie, c) T, (E, z)] + 

5 [Ii,(c) 8, (a,, x) - H,,’ (c) 5°C (a,, x)]} = 0 
n=1 

Is, (x, 5) = 
7 K(u)--K(i%) 

a x2 -,- u2 Y'(W 4 Y(U, 4&(u) 

We note that by virtue of the:ssumptions made about the meromorphic function K (u), 
the latter can be represented by the sum of principal values 

K(u) = A - $ ii1 ym ,f$, 2) ) g, = ni {[K-l (i-fm)]‘}-l (3.4) 
m 

Using (3.4) we can transform the expressions (3.3) as follows : 
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(3.5) 

(3.6) 

4. Now we turn our attention to the fact that although the functions y (iynE,~> and 

q Wm7 X) can increase with x + 30, it can easily be proTed that a linear combination 

of these functions given by 

r! (&I? x) = BlU t&7,,, XI + 82r) (%I,7 XI (4.1) 

exists such that for z -+ CQ 

5 WiT 21-t 0, 5’ Pynir x) * 0 (4.2) 

Writing the function 5 (iym, X) in the form of the integral (1.3) and taking into ac- 
count its properties (4. Z), we obtain 

5 (&W zf z.z - x (5, a) (4.3) 

Here and in the following we have 

x (ct, B) = s @) fa (%I$) % (Y7W XI - a’ (iY,,t B) PP (Ymr 211 

Supplementing (#. 3) with the relation 

%Pn fYnz7 4 -+- fJ42Ga (y,,, 4 = 0 
(4 4) 

which follows from the boundary condition (1.2), we obtain a set of two equations which 

yields Pa (y,, x> and (I, (ym9 da 
Let us now write the four discontinuous functions in the form of the integrals (1.3) 

(4.5) 

Substituting into the last two relations of (4.5) the expressions obtained above for 

Pn t%?z, 5) and % (yms z), we obtain a system of four equations based on (4.5), and 
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these equations yield 

Pd (%n, I) = - [C (j’m) c* (iv,,, U)f-’ 5 (iy,, d) &f,, (.T) 
(4.6) 

PC (Ym, 4 = - IC (Y,) 5* (&, a)]-l 5 (iym, z) A!,,, (c) 

od (%,, X, = - [C (ym) c* (iy,, a)]-’ 5’ (iym, d) M, (z) 

o, (Ym, 4 
where 

- - IC (Y”l) 5* (iymt ujl-l 5 (iy,, x) M,’ (c) 

5* (iy,, a) = al5 (iy,, a) + 01~5’ (iy,, a) 
(4.7) 

JI, (J9 = Y (iYm, x> rl* (iy,,, u) - q (iym, x) y* (iy,, a) 

Y* (iy,,, u) = cw (iy,, 4 + a,y’ (iy,, a) 

7” (iym7 u) = Rrl (iy,, u) + qq (iy,, a) 

We me that the furam pd (y,, x), p, (ym, x), bd (ym, s)and o, (ym, 2) are 
all, by virtue of the formulas (4. l), (4.6) and (4.7). linear combinations of the functions 

Y (iy,, 5) and ‘I (iy,, x). It was also taken into account in (4.6) that the Wronskian 

of the functions y (iy,, x) and rl (iym,_ r) is equal to C (ym) s-l (x). 
Substituting now the expressions (4.6) and (3.5) into the relations (3.2) and equating 

to zero the sums of the coefficients accompanying like functions Y (iy,, 2) and 11 (iy,, 

5), m =I 1, 2, . . .) we obtain two infinite algebraic systems for determining the con- 

stants C, and D n. One of these systems has the form 

s (4 rl* (ir,, a) 
K (ie) (r,,,2 - ~2) [y (ie, 4 5’ (h,, 4 - y’ (ie, 4 5 (iTmy 41 - (4.8) 

s (4 31 
K (i-9 (r,,: - ~~1 [y (ie, c) M,’ (c) - y’ (i&7 c) M7n (c)l + 

O” c s (4 rl* w, 9 a) 
7 Q-62 [H*W 5’ (Q,, 4 - H,’ (4 5 (em, 41 - 

a=, m n 

and the other system is obtained from (4.8) by making the substitutions q* -+ y* and 

PI--+ 82. 

5. Next we investigate the dual series equations of the form 

i QkK(uk)y(uk,x)=f(z) (c\(rG4 (5.1) 
k=o 

,?j QkZj(U.k,Z) = 0 (adr<c, d<z<b) 
k=o 

Here Y (ub, 5) denote the system of the eigenfunctions of the Sturm-Liouville problem 
for the differential equation (1.1). with the boundary conditions 

Y’ (u, a) + %Y (u, 4 = 0, Y’ (u, b) + a,!/ (u, b) =o (5.2) 

and ukis a denumerable set of eigenvalues. We shall assume that in (1.1) the function 
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s (x) ) U for z E (a, 6) and r (x) is a sign-definite function for x e (a, b). Ac- 
cording to [2, 31, the functions y ( uk, X) for 5 E [a, 61 , form a complete orthogo- 
nal system of weight P- 1 (z) , and we shall normalize these functions with the same 
weight so that 11 y 11 = 1. 

The function K (u) in (5.1) has the form (1.5), and properties described in Sect. 1. 
Below we shall limit ourselves to considering the case (1.7), remembering that in the 

general case the function f (z) can be expanded into a series in y (u,, z). 

Using the formulas (1.1) and (1.6), we write the first relation of (5.1) in the same 
form as in (2. l), where 

cl(x) = i Q/cY (nlrr x) (5.3) 

h‘=o 

Here, as before, P, (L) and P, (L) are the differential operators in z of infiniteorder. 

The solution of the differential equation (2.1) in Q (z) has the form (2.3) in which, 
as we indicated before, 7 (u, X) is the solution of (1.1) linearly independent of 

Y (n, x)* 
The formula (2.3).together with the second relation of (5. l), define the function Q (x) 

for all z E [a, 61 with the accuracy of up to the denumerable set of constants C, and 

D n. Using the orthogonal property of the functions y (u k, x), we can now find the un- 

known constants Qk. Taking the integral (2.5) into account, we obtain the following 

expression for Qk : 
Qk = Q czLk) (5.4) 

where Q (u) and H, (ST) are given by the formulas (2.4) and (2.6). 

6. The constants C,and D, must be determined from the condition that the solu- 
tion (5.4) satisfies the first relation of (5.1). Taking into account the expansion of 

j*(x) =y(ia,~),c,(~\<d,f*(s) =O,~<x<c,d<x\<b intoaseries 
in y (uk, s), and the fact that K (id,) z 0, we obtain, after substituting (5.4) into 

(5. l), the relation (3.2) in which (3.3) are replaced by 

m K(/lk)-K(i?t) 
T, (x, x) = 2 

Uk2 +- “A* 2/ kk, r, Y @k, x, 
k=0 

; K (u,) - K (ix) s, (x, x) =: h 
Irk* + x2 y’ @k, )“) ?/ @k? x, 

k=0 

(6.1) 

Using (3.4) we transform the expressions (6.1) into the form (3.5). where 

We also have the following expansions : 
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Supplementing (6.3) with the same expansions for the functions 

?-I (&n, XL {r (iymrx) (a < St< d)> (c < r\< b) (6.4) 
(a < 5 < bj I0 (d -c x q 6) 

and with the relations 

*, (Y,l x> + % Pafymt x) = 0, 0, (ym, z) + a,~, (ym, X) = 0 (6% 5) 

which follow from the boundary conditions (5.2). we obtain a system of eight equations 

in Pr (ymY X) and 5,. (ymt x), r = a, c, d, b, Solving this system and taking into ac- 
count the fact that the Wronskian of the functions q (iym, x) and y (iy,, s) is equal 
to C (y,) s-l (x), we can write or (y,, X) and o, (y,,, z) for r = a, c, d, b in 
the form of the linear combinations of y (i-y,, s) and q (iy,, x). Substituting now 
into (3.2) the expressions (3.5) and (6.2) for the functions T, (x, $1 and S, (x, x), 
as well as the linear expressions for or (y,, 3) and o, (ymr .z), T = c,_ d, and com- 
paring in (3.2) the coefficients accompanying like functions y (iym, 5) and 11 (iy,,, 
21, nz = 1, 2, . . .) we obtain two infinite algebraic systems for determining the con- 
stants C, and D,, 

where 
J’kl (y) = Ah (Y)B, (TV-” (y) (6.7) 

E (y) = A, (y) B, (y> - A, (yP1 (r) 

A, (y) = y’ (iv, a) + ~~~(~y, a), A, (y) = 11’ (iy, a)‘-/- %q(iy, a) 

B,(Y) = y’ (iy, b) -t cx,y (iy, b), B, (y) = r’ (iY* bl + WI(+& 

g, (p, y) = s (x) IY lip, 4 Y’ (iY* 4 - Y’ f&3 4 Y (iYt 41 

5, (p, y) = 5 (5) Lq (ip, 4 Y’ (iy, 4 - q’ (49 2) Y (iY7 41 

6, (p, Y) = s (x) 111 (ip, 5) q’ (iy, 4 - r’ ($4 4 rl (iYY 41 

‘7. In deriving Eqs, (4.8) and (6.6) we have assumed the linear independence of the 
system of functions y (iy,, X) and T] (ir,, x), m = 1, 2, . . . . This can bejustified 
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[4] by recalling that for most real problems 1 ym 1 and 1 6, 1 N m when m ---f 30. 
Using further the asymptotic formulas [ 2, 3, 51 for the functions y (iy,,, , x) and TV (iy,, , 
.z) for large m we can confirm that in the cases which are interesting from the practi- 

cal point of view, the infinite systems (4.8) and (6.6) can be regularized by constructing 

and inverting an infinite matrix with the elements t,,,= (y, - S,)-I. 
In order to invert the above matrix exactly, let us consider the dual integral equation 

m 

m 

s Q(~)e-~“~du==O (-w<z<o) 

-m 

Applying to (7.1) the method expounded in Sects. 1 - 4 with small formal changes, we 
find 

q (5) = 5 d&-Sn” (0 < 2 < OO), Q (u) = jj c&i (6, - iu)-’ (7.2) 
n=i ?l==i 

where the constants o kn are obtained from the infinite system 

i $nr,,,, = %!;&, h‘ (1)Z -= 1, 2, . .) (7.3) 
n=1 

Here the constants g, have the form (3.4) and 6 n k is the Kronecker delta. 
We now turn our attention to the fact that the dual equation (7.1) has a corresponding 

first order integral equation of the form 
m 

s q (Q k (x - c) d! = e-“P (O<J:< m), (7.4) 
0 oc 

k(t) = -& $ K(u)~-~“” du 
--m 

In [6] where Eqs. (7.4) and (1.5) were solved for the first time, the solution was sought 
in the form (7.2) and an infinite system (7.3) was obtained for determining the constants. 

On the other hand, an exact solution of (7.4) and (1.5) can be obtained using the Wiener- 

Hopf method [6, 71. Comparing this exact solution with (7.2). we find, that the matrix 
okn, which is an inverse of z~,,, has the form 

okn = {K,’ (- i&J [K-l (irh.)] (Th. - S&-l (7.5) 

K, (u) = K_(- u) = 1/z fj (I + $) (I+ k)-’ 
m=1 

The method of solving an equation of the form (1.4) and (5.1) given above, was used 
by the author in the study of dual integral equations generated by the integral, sine and 

cosine Fourier transforms, and by the integral Hankel, Meler-Fock and Kontorovich- 
Lebedev transforms, and also to study the dual series equations in terms of the trigono- 
metric, Bessel and associated legendre functions. Examples of applications of the method 
to concrete problems are given in [8], 

After making the appropriate generalizations, the method can be used to study the 
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dual series equations in terms of the eigenfunctions of the Sturm-Liouville problem for 

a fourth order linear differential equation. Such dual equations are encountered when 

the method of homogeneous solutions is used to solve mixed problems. 

REFERENCES 

1. Aleksandrov, V. M., On solving a class of dual equations. Dokl. Akad. Nauk 

SSSR, Vol.210, Nol, 1973. 

2. Levitan, V. M. and Sargsian, I.S., Introduction to Spectral Theory. 

Moscow, “Nat&a”, 1970. 

3. Marchenko, V. A., Spectral Theory of the Sturm-Liouville Operators. Kiev, 

“Nat&ova Dumka”, 1972. 

4. ,Babeshko, V.A., On the theory and applications of certain first kind integral 

equations. Dokl. Akad. Nauk SSSR, Vol. 204, No 2, 1972. 
5. Tricomi, F., Differential Equations. N. Y, , Wiley, 1957. 

6. Babeshko, V. A., On an asymptotic method applicable to the solution of integ- 

ral equations in the theory of elasticity and mathematical physics. PMM Vol. 30, 

No4, 1966. 
7, Aleksandrov, V. M., Asymptotic methods in contact problems of elasticity 

theory. PMM Vol. 32, No4, 1968. 
8. Aleksandrov, V. M. and Chebakov, M. I. , On a method of solving dual 

integral equations. PMM Vol. 37, Ng 6, 1973. 
Translated by L.K. 

UDC 539.3 

ON A METHOD OF SEPARATING THE STATE OF STRESS IN SHELLS 

OF NEGATIVE CURVATURE WITH ASYMPTOTIC EDGE8 

PMM Vol. 39, Ng 2, 1975, pp. 333-341 

N, N. ROGACHEVA 

(Moscow) 

(Received September 13, 1973) 

The method of separating the state of stress is the following for shells with non- 
asymptotic edges: the total state of stress of the shell for which all the conditions 

of applicability of membrane theory are satisfied, is separated into the fundamen- 

tal state of stress and simple edge effects. The boundary conditions are hence also 

separated : the tangential conditions are satisfied because of arbitrariness of the 
membrane theory, and the nontangential conditions because of the simple edge 
effects. 

The possibility is shown in this paper of using this method to analyze shells of 
negative curvature with four asymptotic edges. The theory of the generalized 
edge effect has been constructed in Cl]. Here, the formulas of the generalized 
edge effect are derived by another method for convenience in the subsequent ex- 
position. Boundary conditions are formulated for membrane theory and the gene- 
ralized edge effect for diverse edge fixings. 

All the terminology, notation, equations and relations of shell theory are bor- 
rowed from [ 11. 


